Информационно-образовательный портал для учителя информатики и ИКТ     вход :: регистрация
   

Информатика и информационно-коммуникационные технологии в школе

 
   

   24.05.2018г.

Доброе утро!  

Разделы портала
 
  Планы, конспекты, презентации, методические находки, дидактический материал к уроку
 
  Настройка и использование школьной компьютерной сети
 
  Краткий теоретический материал, который можно применять на уроке...
 
  Разные полезности, программы, инструкции, советы...
 
  Как сохранить здоровье на уроках информатики
 
  Примерные экзаменационные билеты и ответы
 
  Программы для скачивания...
 
  Правила для пользователей портала
 
  Компьютерное тестирование знаний. Наш проект. Cправочное online руководство по программе
 
 
Сервисы портала
все новости...
поиск по статьям сайта...
вопросы, обсуждения, решаем проблемы вместе ...
отзывы, замечания, предложения...
проверить свои знания, пройдя тесты в режиме online...
образовательные сайты, друзья портала...
для связи с администратором портала
 
Внимание! Опрос!

ЕГЭ по информатике - ... ?

очень сложный
сложный
нормальный
лёгкий
не знаю


результаты

____________________

  Полная или частичная перепечатка каким бы то ни было способом материалов данного сайта допускается только с письменного согласия автора.
  При цитировании или ином использовании материалов ссылка на портал www.klyaksa.net обязательна.

____________________
 
Наши проекты:

MyTestX - лего и удобно

 
 
Афоризм дня
Дружба - понятие круглосуточное.

М.А. СВЕТЛОВ


Реклама:


 


Rambler's Top100

Рейтинг@Mail.ru
Яндекс цитирования
 
 

Начало » Экзамен по информатике » Ответы 11 класс » [Экзамен по информатике][Билет №10]

Представление данных в памяти персонального компьютера (числа, символы, графика, звук).

Форма и язык представления информации

Воспринимая информацию с помощью органов чувств, человек стремится зафиксировать ее так, чтобы она стала понятной и другим, представляя ее в той или иной форме.

Музыкальную тему композитор может наиграть на пианино, а затем записать с помощью нот. Образы, навеянные все той же мелодией, поэт может воплотить в виде стихотворения, хореограф выразить танцем, а художник — в картине.

Человек выражает свои мысли в виде предложений, составленных из слов. Слова, в свою очередь, состоят из букв. Это — алфавитное представление информации.

Форма представления одной и той же информации может быть различной. Это зависит от цели, которую вы перед собой поставили. С подобными операциями вы сталкиваетесь на уроках математики и физики, когда представляете решение в разной форме. Например, решение задачи: «Найти значение математического выражения ..." можно представить в табличной или графической форме. Для этого вы пользуетесь визуальными средствами представления информации: числами, таблицей, рисунком.

Таким образом, информацию можно представить в различной форме:

  • знаковой письменной, состоящей из различных знаков, среди которых принято выделять
    • символьную в виде текста, чисел, специальных символов (например, текст учебника);
    • графическую (например, географическая карта);
    • табличную (например, таблица записи хода физического эксперимента);
  • в виде жестов или сигналов (например, сигналы регулировщика дорожного движения);
  • устной словесной (например, разговор).

Форма представления информации очень важна при ее передаче: если человек плохо слышит, то передавать ему информацию в звуковой форме нельзя; если у собаки слабо развито обоняние, то она не может работать в розыскной службе. В разные времена люди передавали информацию в различной форме с помощью: речи, дыма, барабанного боя, звона колоколов, письма, телеграфа, радио, телефона, факса.

Независимо от формы представления и способа передачи информации, она всегда передается с помощью какого-либо языка.

На уроках математики вы используете специальный язык, в основе которого — цифры, знаки арифметических действий и отношений. Они составляют алфавит языка математики.

На уроках физики при рассмотрении какого-либо физического явления вы используете характерные для данного языка специальные символы, из которых составляете формулы. Формула — это слово на языке физики.

На уроках химии вы также используете определенные символы, знаки, объединяя их в «слова» данного языка.

Существует язык глухонемых, где символы языка — определенные знаки, выражаемые мимикой лица и движениями рук.

Основу любого языка составляет алфавит — набор однозначно определенных знаков (символов), из которых формируется сообщение.

Языки делятся на естественные (разговорные) и формальные. Алфавит естественных языков зависит от национальных традиций. Формальные языки встречаются в специальных областях человеческой деятельности (математике, физике, химии и т. д.). В мире насчитывается около 10000 разных языков, диалектов, наречий. Многие разговорные языки произошли от одного и того же языка. Например, от латинского языка образовались французский, испанский, итальянский и другие языки.

Кодирование информации

С появлением языка, а затем и знаковых систем расширились возможности общения между людьми. Это позволило хранить идеи, полученные знания и любые данные, передавать их различными способами на расстояние и в другие времена — не только своим современникам, но и будущим поколениям. До наших дней дошли творения предков, которые с помощью различных символов увековечили себя и свои деяния в памятниках и надписях. Наскальные рисунки (петроглифы) до сих пор служат загадкой для ученых. Возможно, таким способом древние люди хотели вступить в контакт с нами, будущими жителями планеты и сообщить о событиях их жизни.

Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии.

Представление информации с помощью какого-либо языка часто называют кодированием.

 Код — набор символов (условных обозначений) дли представления информации. Кодирование — процесс представления информации в виде кода.

Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации — мигание фар или его отсутствие.

Вы встречаетесь с кодированием информации при переходе дороги по сигналам светофора. Код определяют цвета светофора — красный, желтый, зеленый.

В основу естественного языка, на котором общаются люди, тоже положен код. Только в этом случае он называется алфавитом. При разговоре этот код передается звуками, при письме — буквами. Одну и ту же информацию можно представить с помощью различных кодов. Например, запись разговора можно зафиксировать посредством русских букв или специальных стенографических значков.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIX века американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире), короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

Люди всегда искали способы быстрого обмена сообщениями. Для этого посылали гонцов, использовали почтовых голубей. У народов существовали различные способы оповещения о надвигающейся опасности: барабанный бой, дым костров, флаги и т. д. Однако использование такого представления информации требует предварительной договоренности о понимании принимаемого сообщения.

Знаменитый немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Сегодня такой способ представления информации с помощью языка, содержащего всего два символа алфавита — 0 и 1, широко используется в технических устройствах, в том числе и в компьютере. Эти два символа 0 и 1 принято называть двоичными цифрами или битами (от англ. bit  — Binary Digit - двоичный знак).

Инженеров такой способ кодирования привлек простотой технической реализации — есть сигнал или нет сигнала. С помощью этих двух цифр можно закодировать любое сообщение.

Более крупной единицей измерения объема информации принято считать 1 байт, который состоит из 8 бит.

Принято также использовать и более крупные единицы измерения объема информации. Число 1024 (210) является множителем при переходе к более высокой единице измерения.

Килобит Кбит  Кбит = 1024 бит ≈1000 бит
Мегабит Мбит 1 Мбит = 1024 Кбит ≈ 1 000 000 бит
Гигабит Гбит  Гбит = 1024 Мбит ≈ 1 000 000 000 бит
Килобайт Кбайт (Кб) 1 Кбайт = 1024 байт ≈ 1000 байт
Мегабайт Мбайт (Мб) 1 Мбайт = 1024 Кбайт ≈ 1 000 000 байт
Гигабайт Гбайт (Гб) 1 Гбайт = 1024 Мбайт ≈ 1 000 000 000 байт

Кодирование информации в компьютере

Вся информация    , которую обрабатывает компьютер, должна быть представлена двоичным кодом с помощью двух цифр — 0 и 1. Эти два символа принято называть двоичными цифрами, или битами. С помощью двух цифр 1 и 0 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организовано два важных процесса:

  • кодирование, которое обеспечивается устройствами ввода при преобразовании входной информации в форму, воспринимаемую компьютером, то есть в двоичный код;
  • декодирование, которое обеспечивается устройствами вывода при преобразовании данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного
более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

  • 0 — отсутствие электрического сигнала или сигнал имеет низкий уровень;
  • 1 — наличие сигнала или сигнал имеет высокий уровень.

Эти состояния легко различать. Недостаток двоичного кодирования — длинные коды. Но в технике легче иметь дело с большим числом простых элементов, чем с небольшим количеством сложных.

Вам и в быту ежедневно приходится сталкиваться с устройством, которое может находиться только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.

В настоящее время существуют разные способы двоичного кодирования и декодирования информации в компьютере. В первую очередь это зависит от вида информации, а именно, что должно кодироваться: текст, числа, графические изображения или звук. Кроме того, при кодировании чисел важную роль играет то, как они будут использоваться: в тексте, в расчетах или в процессе ввода-вывода. Накладываются также и особенности технической реализации.

Кодирование чисел

Система счисления — совокупность приемов и правил записи чисел с помощью определенного набора символов.

Для записи чисел могут использоваться не только цифры, но и буквы (например, запись римских цифр — XXI). Одно и то же число может быть по-разному представлено в различных системах счисления.

В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные.

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Например, меняя позицию цифры 2 в десятичной системе счисления, можно записать разные по величине десятичные числа, например 2; 20; 2000; 0,02 и т. д.

В непозиционной системе счисления цифры не изменяют своего количественного значения при изменении их расположения (позиции) в числе. Примером непозиционной системы может служить римская система, в которой независимо от местоположения одинаковый символ имеет неизменное значение (например, символ X в числе XXV).

Количество различных символов, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления.

В компьютере наиболее подходящей и надежной оказалась двоичная система счисления, в которой для представления чисел используются последовательности цифр 0 и 1.

Кроме того, для работы с памятью компьютера оказалось удобным использовать представление информации с помощью еще двух систем счисления:

  • восьмеричной ( любое число представляется с помощью восьми цифр — 0, 1, 2... 7);
  • шестнадцатеричной (используемые символы-цифры — 0, 1, 2... 9 и буквы — А, В, С, D, Е, F, заменяющие числа 10, 11, 12, 13, 14, 15 соответственно).

 Кодирование символьной информации

Нажатие алфавитно-цифровой клавиши на клавиатуре приводит к тому, что в компьютер посылается сигнал в виде двоичного числа, представляющего собой одно из значений кодовой таблицы. Кодовая таблица - это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Informational Interchange - американский стандартный код информационного обмена).

Для хранения двоичного кода одного символа выделен 1 байт = 8 бит. Учитывая, что каждый бит принимает значение 1 или 0, количество возможных сочетаний единиц и нулей равно 28 = 256.

Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов. Эти коды и составляют таблицу ASCII. 

Пример, при нажатии клавиши с буквой S в память компьютера записывается код 01010011. При выводе буквы S на экран компьютер выполняет декодирование — на основании этого двоичного кода строится изображение символа.

SUN (СОЛНЦЕ) - 01010011  010101101  01001110

Стандарт ASCII кодирует первые 128 символов от 0 до 127: цифры, буквы латинского алфавита, управляющие символы. Первые 32 символа являются управляющими и предназначены в основном для передачи команд управления. Их назначение может варьироваться в зависимости от программных и аппаратных средств. Вторая половина кодовой таблицы (от 128 до 255) американским стандартом не определена и предназначена для символов национальных алфавитов, псевдографических и некоторых математических символов. В разных странах могут использоваться различные варианты второй половины кодовой таблицы.

Обратите внимание! Цифры кодируются по стандарту ASCII  записываются в двух случаях - при вводе-выводе и когда они встречаются я тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичный код.

Для сравнения рассмотрим число 45 для двух вариантов кодирования.

При использовании в тексте это число потребует для своего представления 2 байта, поскольку каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII . В двоичной системе - 00110100 00110101.

При использовании в вычислениях код этого числа будет получен по специальным правилам перевода и представлен в виде 8-разрядного двоичного числа 00101101, на что потребуется 1 байт.

Кодирование графической информации

Создавать и хранить графические объекты в компьютере можно двумя способами — как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.

Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора. Объем растрового изображения определяется как произведение количества точек и информационного объема одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объем одной точки равен 1 биту, так как точка может быть либо черной, либо белой, что можно закодировать двумя цифрами — 0 или 1.

Для кодирования 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 6 цветов — 8 битов (1 байт) и т.д. 

кодирование черно-белого рисунка

кодирование цветного рисунка

Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами. Для каждой линии указываются ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки. Кодирование векторных изображений выполняется различными способами в зависимости от прикладной среды. В частности, формулы, описывающие отрезки кривых, могут кодироваться как обычная буквенно-цифровая информация для дальнейшей обработки специальными программами.

Кодирование звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие участки, причем для каждого такого участка устанавливается определенная величина амплитуды.Таким образом, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность уровней громкости.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. В таком случае количество уровней сигнала будет равно 65536.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, т.е. от частоты дискретизации. Чем больше количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, т.е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц - качество звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.

программа звукозаписьСтандартная программа Windows Звукозапись играет роль цифрового магнитофона и позволяет записывать звук, т.е. дискретизировать звуковые сигналы, и сохранять их в звуковых файлах в формате wav. Также эта программа позволяет производить простейшее редактирование звуковых файлов.

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

[Добавить в избранное]

 
Рекомендуем:

MyTest

Компьютерное тестирование знаний учащихся, сертификация и аттестация сотрудников.
Деcять типов заданий, локальное и сетевое тестирование...
 
Узнать больше и скачать программу MyTestXPro...
 
Обсудить на форуме и принять участие в создании банка тестов...
 
Новая группа ВКонтакте:
vk.com/MyTestXPro



Рекомендуем купить
на Ozon.ru:


Новый учебник информатики (ФГОС, Углубленный уровень. 10-11 кл.)
Полякова К.Ю.

Год выпуска: 2017


 
Реклама:
 

Разместите нашу кнопку

на своем сайте...
Инструкция


 
 

 
Реклама:

По вопросам размещения вашей рекламы на страницах портала обращайтесь к администратору по системе обратной связи.
Все предложения обсуждаются индивидуально. Ждем.

 
 


↑    

Дизайн, программирование и идея портала Клякс@.net -bas- © 2004-2016г.

    ↑